Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38569554

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.

2.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613362

RESUMO

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Assuntos
Glomerulonefrite , Extratos Vegetais , Testosterona , Masculino , Animais , Camundongos , Células Intersticiais do Testículo , Curcuma , Hidrocortisona , Deficiência da Energia Yang
3.
Mol Hortic ; 4(1): 3, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282004

RESUMO

Plant Myeloblastosis (MYB) proteins function crucially roles upon variegated abiotic stresses. Nonetheless, their effects and mechanisms in rose (Rosa chinensis) are not fully clarified. In this study, we characterized the effects of rose RcMYB8 under salt and drought tolerances. For induction of the RcMYB8 expression, NaCl and drought stress treatment were adopted. Rose plants overexpressing RcMYB8 displayed enhanced tolerance to salinity and drought stress, while silencing RcMYB8 resulted in decreased tolerance, as evidenced by lowered intra-leaf electrolyte leakage and callose deposition, as well as photosynthetic sustainment under stressed conditions. Here, we further show that RcMYB8 binds similarly to the promoters of RcPR5/1 and RcP5C51 in vivo and in vitro. Inhibiting RcP5CS1 by virus-induced gene silencing led to decreased drought tolerance through the reactive oxygen species (ROS) homeostatic regulation. RcP5CS1-silenced plants showed an increase in ion leakage and reduce of proline content, together with the content of malondialdehyde (MDA) increased, lowered activities of Catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). Our study highlights the transcriptional modulator role of RcMYB8 in drought and salinity tolerances, which bridges RcPR5/1 and RcP5CS1 by promoting ROS scavenging. Besides, it is probably applicable to the rose plant engineering for enhancing their abiotic stress tolerances.

4.
Am J Clin Nutr ; 119(1): 18-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898434

RESUMO

BACKGROUND: Wholegrain intake is associated with lower risk of cardiometabolic diseases in adults, potentially via changes in the gut microbiota. Although cardiometabolic prevention should start early, we lack evidence on the effects in children. OBJECTIVES: This study investigated the effects of wholegrain oats and rye intake on serum low-density lipoprotein (LDL) cholesterol and plasma insulin (coprimary outcomes), other cardiometabolic markers, body composition, gut microbiota composition and metabolites, and gastrointestinal symptoms in children with high body mass index (BMI). METHODS: In a randomized crossover trial, 55 healthy Danish 8- to 13-y-olds received wholegrain oats and rye ("WG") or refined grain ("RG") products ad libitum for 8 wk in random order. At 0, 8, and 16 wk, we measured anthropometry, body composition by dual-energy absorptiometry, and blood pressure. Fasting blood and fecal samples were collected for analysis of blood lipids, glucose homeostasis markers, gut microbiota, and short-chain fatty acids. Gut symptoms and stool characteristics were determined by questionnaires. Diet was assessed by 4-d dietary records and compliance by plasma alkylresorcinols (ARs). RESULTS: Fifty-two children (95%) with a BMI z-score of 1.5 ± 0.6 (mean ± standard deviation) completed the study. They consumed 108 ± 38 and 3 ± 2 g/d wholegrain in the WG and RG period, which was verified by a profound difference in ARs (P < 0.001). Compared with RG, WG reduced LDL cholesterol by 0.14 (95% confidence interval: -0.24, -0.04) mmol/L (P = 0.009) and reduced total:high-density lipoprotein cholesterol (P < 0.001) and triacylglycerol (P = 0.048) without altering body composition or other cardiometabolic markers. WG also modulated the abundance of specific bacterial taxa, increased plasma acetate, propionate, and butyrate and fecal butyrate and reduced fatigue with no other effects on gut symptoms. CONCLUSION: High intake of wholegrain oats and rye reduced LDL cholesterol and triacylglycerol, modulated bacterial taxa, and increased beneficial metabolites in children. This supports recommendations of exchanging refined grain with wholegrain oats and rye among children. This trial was registered at clinicaltrials.gov as NCT04430465.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Criança , Humanos , Biomarcadores , Butiratos , Doenças Cardiovasculares/prevenção & controle , Colesterol , LDL-Colesterol , Estudos Cross-Over , Grão Comestível , Triglicerídeos , Adolescente
5.
Nat Med ; 30(1): 138-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38102298

RESUMO

Bacteriophage (also known as phage) communities that inhabit the gut have a major effect on the structure and functioning of bacterial populations, but their roles and association with health and disease in early life remain unknown. Here, we analyze the gut virome of 647 children aged 1 year from the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort, all deeply phenotyped from birth and with longitudinally assessed asthma diagnoses. Specific temperate gut phage taxa were found to be associated with later development of asthma. In particular, the joint abundances of 19 caudoviral families were found to significantly contribute to this association. Combining the asthma-associated virome and bacteriome signatures had additive effects on asthma risk, implying an independent virome-asthma association. Moreover, the virome-associated asthma risk was modulated by the host TLR9 rs187084 gene variant, suggesting a direct interaction between phages and the host immune system. Further studies will elucidate whether phages, alongside bacteria and host genetics, can be used as preclinical biomarkers for asthma.


Assuntos
Asma , Bacteriófagos , Lactente , Humanos , Pré-Escolar , Viroma , Estudos Prospectivos , Bacteriófagos/genética , Asma/epidemiologia , Asma/genética , Bactérias/genética
6.
Plant Physiol ; 193(2): 1695-1712, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37364582

RESUMO

NAC (NAM, ATAF1,2, and CUC2) transcription factors (TFs) play critical roles in controlling plant growth, development, and abiotic stress responses. However, few studies have examined NAC proteins related to drought stress tolerance in rose (Rosa chinensis). Here, we identified a drought- and abscisic acid (ABA)-induced NAC TF, RcNAC091, that localizes to the nucleus and has transcriptional activation activity. Virus-induced silencing of RcNAC091 resulted in decreased drought stress tolerance, and RcNAC091 overexpression had the opposite effect. Specifically, ABA mediated RcNAC091-regulated drought tolerance. A transcriptomic comparison showed altered expression of genes involved in ABA signaling and oxidase metabolism in RcNAC091-silenced plants. We further confirmed that RcNAC091 directly targets the promoter of RcWRKY71 in vivo and in vitro. Moreover, RcWRKY71-slienced rose plants were not sensitive to both ABA and drought stress, whereas RcWRKY71-overexpressing plants were hypersensitive to ABA, which resulted in drought-tolerant phenotypes. The expression of ABA biosynthesis- and signaling-related genes was impaired in RcWRKY71-slienced plants, suggesting that RcWRKY71 might facilitate the ABA-dependent pathway. Therefore, our results show that RcWRKY71 is transcriptionally activated by RcNAC091, which positively modulates ABA signaling and drought responses. The results of this study provide insights into the roles of TFs as functional links between RcNAC091 and RcWRKY71 in priming resistance; our findings also have implications for the approaches to enhance the drought resistance of roses.


Assuntos
Ácido Abscísico , Rosa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Rosa/genética , Rosa/metabolismo , Resistência à Seca , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Secas , Estresse Fisiológico/genética
7.
Nat Microbiol ; 8(5): 986-998, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037943

RESUMO

The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Lactente , Humanos , Estudos Prospectivos , Bacteriófagos/genética , Lisogenia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Bactérias/genética
8.
Hortic Res ; 10(3): uhac291, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938564

RESUMO

Basic helix-loop-helix (bHLH) proteins play pivotal roles in plant growth, development, and stress responses. However, the molecular and functional properties of bHLHs have not been fully characterized. In this study, a novel XI subgroup of the bHLH protein gene RcbHLH59 was isolated and identified in rose (Rosa sp.). This gene was induced by salinity stress in both rose leaves and roots, and functioned as a transactivator. Accordingly, silencing RcbHLH59 affected the antioxidant system, Na +/K + balance, and photosynthetic system, thereby reducing salt tolerance, while the transient overexpression of RcbHLH59 improved salinity stress tolerance. Additionally, RcbLHLH59 was found to regulate the expression of sets of pathogenesis-related (PR) genes in RcbHLH59-silenced (TRV-RcbHLH59) and RcbHLH59-overexpressing (RcbHLH59-OE) rose plants. The RcPR4/1 and RcPR5/1 transcript levels showed opposite changes in the TRV-RcbHLH59 and RcbHLH59-OE lines, suggesting that these two genes are regulated by RcbHLH59. Further analysis revealed that RcbHLH59 binds to the promoters of RcPR4/1 and RcPR5/1, and that the silencing of RcPR4/1 or RcPR5/1 led to decreased tolerance to salinity stress. Moreover, callose degradation- and deposition-related genes were impaired in RcPR4/1- or RcPR5/1-silenced plants, which displayed a salt tolerance phenotype by balancing the Na+/K+ ratio through callose deposition. Collectively, our data highlight a new RcbLHLH59-RcPRs module that positively regulates salinity stress tolerance by balancing Na+/K+ and through callose deposition in rose plants.

9.
J Colloid Interface Sci ; 629(Pt A): 994-1002, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152623

RESUMO

Metal sulfides are regarded as efficient scavengers for heavy metals. However, the heavy metal adsorption capacity of metal sulfides is far from its theoretical values due to the insufficient exposure of adsorption sites. Surface modification of metal sulfides is considered one of the most effective strategies for improving heavy metal removal performance. Here, microalgae-derived carbon quantum dots (CQDs) were used as a green modifier for mediating nano-MnS/FeS formation to enhance Cd2+ removal. With the addition of 1 wt% CQDs, the Cd2+ adsorption capacity of 1 %CQDs-MnS reached 481 mg/g at 25 °C and 648.6 mg/g at 45 °C, which surpassed most of the previously reported metal sulfides. Furthermore, the CQDs-modified MnS displayed a better Cd2+ removal capacity than the commercial modifier sodium alginate. The mechanism analysis suggested that decreasing the particle size to expose more adsorption sites and providing additional chelating sites derived from the CQDs are two main reasons why CQDs enhance the Cd2+ adsorption capacity of metal sulfides. This study presents an exceptional cadmium nano-adsorbent of 1 %CQDs-MnS and provides a new perspective on the enhancement of heavy metal removal by using CQDs as a promising and universal green modifier that mediates the formation of metal sulfides.


Assuntos
Metais Pesados , Microalgas , Pontos Quânticos , Cádmio , Carbono , Adsorção , Alginatos , Sulfetos
10.
Sci Rep ; 12(1): 14263, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995927

RESUMO

The water-soluble ß-cyclodextrin-curcumin (CDC) is used in pharmaceutical applications and as a natural food colorant. The previous study revealed that curcumin potentially impacted the reproductive system. The present study investigated the possible roles of the CDC in testosterone secretion in Leydig cells and mice. Primary Leydig cells were treated with the CDC to determine their effect on cell proliferation, testosterone levels, the protein and mRNA expression of the transcription factor, and steroidogenic enzymes. Our data showed that CDC stimulated testosterone production via upregulating transcription factor steroidogenic factor-1 (NR5A1), cAMP-response element-binding protein (CREB), and steroidogenic enzymes steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), 17-alpha-hydroxylase/17,20-lyase (CYP17A1), 3ß-/17ß-hydroxysteroid dehydrogenase type 1 (3ß/17ß-HSD, HSD3b1/HSD17b1). CDC could significantly stimulate H89-suppressed StAR and CREB expression but not reverse melatonin-suppressed StAR expression. We further detected the hormonal activity with transgenic yeast, and CDC showed potential androgenic antagonistic activity. Meanwhile, we investigated its aphrodisiac effect on hydrocortisone-induced mice. Exposure to hydrocortisone decreased the mating ability, reproductive organs, and testosterone level and disrupted testicular histology. However, all of these effects were significantly improved by CDC treatment. In conclusion, these results indicated that mechanisms of CDC in stimulating testosterone production involve upregulating the cAMP-PKA pathway.


Assuntos
Afrodisíacos , Curcumina , beta-Ciclodextrinas , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Curcumina/metabolismo , Curcumina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hidrocortisona/metabolismo , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Fosfoproteínas/metabolismo , Testosterona/metabolismo , beta-Ciclodextrinas/farmacologia
11.
Foods ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34441592

RESUMO

Insects are suggested as a sustainable protein source of high nutritional quality, but the effects of insect ingestion on processes in the gastrointestinal tract and gut microbiota (GM) remain to be established. We examined the effects of partial substitution of meat with insect protein (Alphitobius diaperinus) in a four-week dietary intervention in a healthy rat model (n = 30). GM composition was characterized using' 16S rRNA gene amplicon profiling while the metabolomes of stomach, small intestine, and colon content, feces and blood were investigated by 1H-NMR spectroscopy. Metabolomics analyses revealed a larger escape of protein residues into the colon and a different microbial metabolization pattern of aromatic amino acids when partly substituting pork with insect. Both for rats fed a pork diet and rats fed a diet with partial replacement of pork with insect, the GM was dominated by Lactobacillus, Clostridium cluster XI and Akkermansia. However, Bray-Curtis dissimilarity metrics were different when insects were included in the diet. Introduction of insects in a common Western omnivore diet alters the gut microbiome diversity with consequences for endogenous metabolism. This finding highlights the importance of assessing gastrointestinal tract effects when evaluating new protein sources as meat replacements.

12.
Nat Commun ; 12(1): 1333, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637761

RESUMO

T follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3' UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3' UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.


Assuntos
Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Células T Auxiliares Foliculares/metabolismo , Animais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Centro Germinativo/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ativação Linfocitária , Linfócitos Nulos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo , Receptores CXCR5/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-31871482

RESUMO

BACKGROUND: Ginkgo biloba extract is widely studied for antiaging activities, but little is known about its antiaging mechanism of protein carbonylation. In order to verify carbonyl toxification (stress) hypothesis of aging, we have investigated the effects of EGb761 on hippocampal neuronal injury and carbonyl stress of aging rats. METHODS: Seventy-two Wister male rats were randomly assigned into six groups (n = 12), normal control (NC), model control (MC), vitamin E (VE, 60 mg/kg) group, EGb761 low doses (GBEL, 8.75 mg/kg), EGb761 moderate doses (GBEM, 17.5 mg/kg), and EGb761 high doses (GBEH, 35 mg/kg). Except the NC, the other groups were subject to subcutaneous administration of 0.5% D-gal (10 ml/kg/day) for 6 weeks to induce aging model. The study detected cognitive impairment in rats by Morris water maze test and the contents of superoxidase dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (T-AOC) by the related kits. The level of 4-hydroxy-2-nonenal (4-HNE) protein adducts in rat brain was detected, and the ultrastructure of hippocampus was observed. RESULTS: The EGb761 treatment groups significantly improved the spatial learning and memory of rats. Moreover, EGb761 treatment could reduce hippocampal neuronal damage based on histopathological and ultrastructural observation. Further studies have proved that these activities are remarkably related with the reducing level of MDA, protein carbonyl and lipofuscin, and 4-HNE protein expression, as well as the increasing of SOD and T-AOC content. Furthermore, EGb761 improves telomerase activity by detecting telomerase activity in the brain of aging rats. CONCLUSION: Our data indicate that EGb761 is an effective agent against D-gal-induced hippocampal neuronal loss owing to its antioxidative as well as carbonyl stress properties. Meanwhile, the carbonylation hypothesis is confirmed that the high level of 4-HNE may cause age-related neurodegenerative disorders.

15.
Genomics Proteomics Bioinformatics ; 17(2): 154-168, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31154015

RESUMO

N6-methyladenosine (m6A), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of m6A modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced m6A levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. m6A immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that m6A was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, m6A was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated m6A modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.


Assuntos
Adenosina/análogos & derivados , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neurogênese , Neurônios/metabolismo , Adenosina/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
RSC Adv ; 9(58): 33898-33902, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528922

RESUMO

A carbon nanoparticle (CNP) and Cryonase-aided method that realizes the amplified fluorescent detection of theophylline was proposed. The amplification technique exploits distinct binding affinities of CNP towards the FAM-labeled theophylline RNA aptamer (aptasensor) and aptasensor/theophylline complex as well as the protection effect of CNP for absorbed aptasensor from enzymatic digestion by Cryonase. Upon the addition of theophylline, it forms an aptasensor/theophylline complex with a fluorescent dye-tagged aptasensor that is initially absorbed and quenched by CNP. The nuclease activity of Cryonase towards detached aptasensor probes is then activated, leading to efficient cleavage of aptasensor probes and separation of the fluorescent dye from the CNP surface. Theophylline that has been liberated can launch another reaction cycle, which ensures the sensitivity enhancement. A detection limit is achieved as high as 6.3 nM, which is 400-fold better than traditional strategies. The proposed sensing system also provides desired selectivity even in serum samples. The assay is simple, sensitive, selective, and universal, and has great promise for the design and application of aptasensors in the biological, chemical, and biomedical fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...